Defesa de Dissertação de Doutorado do aluno Leonardo Cardia da Cruz
Título da dissertação: Habilitando Anotações de Dados Autônomos: Uma Abordagem de Aprendizado por Reforço com Humano no Loop
Resumo: As técnicas de aprendizado profundo têm mostrado contribuições significativas em vários campos, incluindo a análise de imagens. A grande maioria dos trabalhos em visão computacional concentra-se em propor e aplicar novos modelos e algoritmos de aprendizado de máquina. Para tarefas de aprendizado supervisionado, o desempenho dessas técnicas depende de uma grande quantidade de dados de treinamento, bem como de dados rotulados. No entanto, a rotulagem é um processo caro e demorado. Uma recente área de exploração são as reduções dos esforços na preparação de dados, deixando-os sem inconsistências, ruídos, para que os modelos atuais possam obter um maior desempenho. Esse novo campo de estudo é chamado de Data-Centric IA. Apresentamos uma nova abordagem baseada em Deep Reinforcement Learning (DRL), cujo trabalho é voltado para a preparação de um conjunto de dados onde as anotações de caixas delimitadoras são feitas de modo autônomo e econômico. Nossa abordagem consiste na criação de uma metodologia para treinamento de um agente virtual a fim de rotular automaticamente os dados, a partir do auxílio humano como professor desse agente. Implementamos o algoritmo Deep Q-Network para criar o agente virtual e desenvolvemos uma abordagem de aconselhamento para facilitar a comunicação do humano professor com o agente virtual estudante. Para completar nossa implementação, utilizamos o método de aprendizado ativo para selecionar casos onde o agente possui uma maior incerteza, necessitando da intervenção humana no processo de anotação durante o treinamento. Nossa abordagem foi avaliada e comparada com outros métodos de aprendizado por reforço e interação humano-computador, em diversos conjuntos de dados, onde o agente virtual precisou criar novas anotações na forma de caixas delimitadoras. Os resultados mostram que o emprego da nossa metodologia impacta positivamente para obtenção de novas anotações a partir de um conjunto de dados com rótulos escassos, superando métodos existentes. Desse modo, apresentamos a contribuição no campo de Data-Centric IA, com o desenvolvimento de uma metodologia de ensino para criação de uma abordagem autônoma com aconselhamentos humanos para criar anotações econômicas a partir de anotações escassas.
Orientador: Prof. Dr. Alberto Barbosa Raposo
Co-orientador: Prof. Dr. Cesar Augusto Sierra Franco
Banca:
Prof. Dr. Anselmo Cardoso de Paiva
Prof(a) Dr(a) Sandra Eliza Fontes de Avila
Prof. Dr. Marcelo Gattass
Prof. Dr. Jan Jose Hurtado Jauregui
Prof. Dr. Luiz José Schirmer Silva
Prof. Dr. Helio Côrtes Vieira Lopes
Acompanhe-nos também no site: https://puc-rio.zoom.us/j/99944871210?pwd=clk0QUtqM2lyNTFJZTFIYms1WUFTQT09