Fechar

Defesa de doutorado do aluno Antônio José Grandson Busson

Defesa de doutorado do aluno Antônio José Grandson Busson

Título da tese:

A Self-supervised Method for Blind Denoising of Seismic Shot Gathers

Resumo:

Nos últimos anos, a geofísicos tem se dedicado ao aprimoramento da qualidade dos dados sísmicos por meio da atenuação de ruído e interpolação de sismogramas usando métodos puramente baseados em CNN. Métodos baseados em CNN podem alcançar resultados estado-da-arte para remoção de ruídos. No entanto, eles não se aplicam a cenários sem dados de treinamento emparelhados (ou seja, dados sísmicos ruidosos e dados sísmicos sem ruído correspondentes). Neste trabalho, tratamos a atenuação de ruídos de dados sísmicos como um problema de atenuação de ruído cega, que consiste em remover ruídos desconhecidos sem dados pareados. Em outras palavras, a base usada pelo modelo de denoiser é aprendida a partir das próprias amostras ruidosas durante o treinamento. Motivado por este contexto, o principal objetivo deste trabalho é propor um método auto-supervisionado para atenuação cega de dados sísmicos, que não requer análise prévia do sinal sísmico, nenhuma estimativa do ruído e nenhum dado de treinamento pareado.

O método proposto assume dois conjuntos de dados: um contendo shot gathers com ruídos e o outro com shot gathers sem ruídos. A partir desses dados, treinamos dois modelos: (1) Seismic Noise Transfer (SNT), que aprende a produzir shot gathers com ruído sintético contendo o ruído dos shot gathers com ruído e o sinal dos shot gathers sem ruído; E (2) Sismic Neural Denoiser (SND), que aprende a mapear os shot gathers com ruído sintético de volta à coleta aos shot gathers sem ruído original. Após o treinamento, o SND sozinho é usado para remover o ruído das capturas ruidosas originais. Nosso modelo SNT adapta o algoritmo Neural Style Transfer (NST) ao domínio sísmico. Além disso, nosso modelo SND consiste em uma nova arquitetura CNN baseada em fusão de atributos em várias escalas para eliminação de ruído em shot gathers. Nosso método produziu resultados promissores em experimentos, alcançando um ganho de PSNR de 0,9 em comparação com outros modelos de última geração.

Orientador:

Prof(a). Doutor(a) Sérgio Colcher

Banca:

Prof Doutor André Bulcão

Prof Doutor Julio Cesar Duarte

Prof Doutor Marcelo Gatass

Prof Doutor Alberto Barbosa Raposo

Prof Doutor Jônatas Wehrmann

Prof. Doutor Sergio Lifschitz

Prof. Doutor Alan Livio Vasconcelos Guedes

Acompanhe-nos pelo link:

http://www.inf.puc-rio.br/blog/noticia/noticia/defesa-de-tese-de-doutorado-a-self-supervised-method-for-blind-denoising-of-seismic-shot-gathers