Defesa de Tese de Doutorado do aluno Lucas Caracas de Figueiredo
Título da tese: Deep-Learning-Based Shape Matching Framework on 3D CAD Models
Resumo:
Modelos CAD 3D ricos em dados são essenciais durante os diferentes estágios do ciclo de vida de projetos de engenharia. Devido à recente popularização da metodologia BIM e do uso de Gêmeos Digitais para a manufatura inteligente, a quantidade de detalhes, o tamanho, e a complexidade desses modelos aumentaram significativamente. Apesar desses modelos serem compostos de várias geometrias repetidas, os softwares de projeto de plantas geralmente não proveem nenhuma informação de instanciação. Trabalhos anteriores demonstraram que removendo a redundância na representação dos modelos CAD 3D reduz significativamente o armazenamento e requisição de memória deles, ao passo que facilita otimizações de renderização. Este trabalho propõe um arcabouço para correspondência de formas baseado em aprendizado profundo que minimiza as informações redundantes de um modelo CAD 3D a esse respeito. Nos apoiamos nos avanços recentes no processamento profundo de nuvens de pontos, superando desvantagens de trabalhos anteriores, como a forte dependência da ordenação dos vértices e topologia das malhas de triângulos. O arcabouço desenvolvido utiliza nuvens de pontos uniformemente amostradas para identificar similaridades entre malhas em modelos CAD 3D e computam uma matriz de transformação afim ótima para instancia-las. Resultados em modelos CAD 3D reais demonstram o valor do arcabouço proposto. O procedimento de registro de nuvem de pontos desenvolvido atinge um erro de superfície menor, ao mesmo tempo que executa mais rápido que abordagens anteriores. A abordagem supervisionada de classificação desenvolvida atingiu resultados equivalentes em comparação com métodos limitados anteriores e os superou significativamente num cenário de embaralhamento de vértices. Propomos também uma abordagem não supervisionada que agrupa malhas semelhantes e supera a necessidade de rotular explicitamente as geometrias no modelo CAD 3D. Este método não supervisionado obtém resultados competitivos quando comparados às abordagens anteriores, até mesmo superando-os em determinados cenários.
Orientador: Prof. Dr. Waldemar Celes Filho
Banca:
Prof. Dr. Paulo Ivson Netto Santos
Prof. Dr. Manuel Menezes de Oliveira Neto
Prof. Dr. Anselmo Cardoso de Paiva
Prof. Dr. Marley Maria Bernardes Rebuzzi Vellasco
Prof. Dr. Marcelo Gattass
Prof. Dr. Luiz Henrique de Figueiredo
Prof. Dr. Alberto Barbosa Raposo
Acompanhe-nos também pelo link: https://puc-rio.zoom.us/j/98970035820?pwd=Vno5Ym44c3hETWZKYVVVOWF0TUlpZz09