Defesa de Dissertação de Doutorado do aluno Leonardo Cardia da Cruz

Defesa de Dissertação de Doutorado do aluno Leonardo Cardia da Cruz

Título da dissertação: Habilitando Anotações de Dados Autônomos: Uma Abordagem de Aprendizado por Reforço com Humano no Loop

Resumo: As técnicas de aprendizado profundo têm mostrado contribuições significativas em vários campos, incluindo a análise de imagens. A grande maioria dos trabalhos em visão computacional concentra-se em propor e aplicar novos modelos e algoritmos de aprendizado de máquina. Para tarefas de aprendizado supervisionado, o desempenho dessas técnicas depende de uma grande quantidade de dados de treinamento, bem como de dados rotulados. No entanto, a rotulagem é um processo caro e demorado. Uma recente área de exploração são as reduções dos esforços na preparação de dados, deixando-os sem inconsistências, ruídos, para que os modelos atuais possam obter um maior desempenho. Esse novo campo de estudo é chamado de Data-Centric IA. Apresentamos uma nova abordagem baseada em Deep Reinforcement Learning (DRL), cujo trabalho é voltado para a preparação de um conjunto de dados onde as anotações de caixas delimitadoras são feitas de modo autônomo e econômico. Nossa abordagem consiste na criação de uma metodologia para treinamento de um agente virtual a fim de rotular automaticamente os dados, a partir do auxílio humano como professor desse agente. Implementamos o algoritmo Deep Q-Network para criar o agente virtual e desenvolvemos uma abordagem de aconselhamento para facilitar a comunicação do humano professor com o agente virtual estudante. Para completar nossa implementação, utilizamos o método de aprendizado ativo para selecionar casos onde o agente possui uma maior incerteza, necessitando da intervenção humana no processo de anotação durante o treinamento. Nossa abordagem foi avaliada e comparada com outros métodos de aprendizado por reforço e interação humano-computador, em diversos conjuntos de dados, onde o agente virtual precisou criar novas anotações na forma de caixas delimitadoras. Os resultados mostram que o emprego da nossa metodologia impacta positivamente para obtenção de novas anotações a partir de um conjunto de dados com rótulos escassos, superando métodos existentes. Desse modo, apresentamos a contribuição no campo de Data-Centric IA, com o desenvolvimento de uma metodologia de ensino para criação de uma abordagem autônoma com aconselhamentos humanos para criar anotações econômicas a partir de anotações escassas.

Orientador: Prof. Dr.  Alberto Barbosa Raposo

Co-orientador: Prof. Dr. Cesar Augusto Sierra Franco

Banca: 

Prof. Dr. Anselmo Cardoso de Paiva

Prof(a) Dr(a) Sandra Eliza Fontes de Avila

Prof. Dr. Marcelo Gattass

Prof. Dr. Jan Jose Hurtado Jauregui

Prof. Dr. Luiz José Schirmer Silva

Prof. Dr. Helio Côrtes Vieira Lopes

Acompanhe-nos também no site: https://puc-rio.zoom.us/j/99944871210?pwd=clk0QUtqM2lyNTFJZTFIYms1WUFTQT09

Defesa de Dissertação de Mestrado do aluno Felipe Poggi de A. Fraga

Defesa de Dissertação de Mestrado do aluno Felipe Poggi de A. Fraga

Título da dissertação: On Automatic Generation of Knowledge Connections

Resumo: Contexto: Recentemente, o tópico de Gestão de Conhecimento Pessoal vem ganhando muita popularidade, ilustrado pelo rápido crescimento de aplicativos como Notion, Obsidian, e Roam Research e da aparição de livros como ”How to Take Smart Notes” e ”Building a Second Brain”.Contudo, ainda é uma área que não foi fortemente envolvida pelo Processamento de Linguagem Natural, abrindo assim uma oportunidade para a aplicação do processamento de texto aplicado à operações com conhecimento.Objetivo: Nosso objetivo é o desenvolvimento de um sistema de software que utiliza Processamento de Linguagem Natural (NLP) para transformar uma coleção de textos isolados em uma coleção de textos inter-conectada e internavegável, através de mecanismos de navegação baseados em conceitos mencionados e recomendações semânticas.Trabalho: Neste trabalho apresentamos a metodologia para construir o sistema, demonstrações com exemplos palpáveis, assim como uma avaliação para determinar a coerência dos resultados.

Orientador: Prof. Dr.  Marcus Vinicius Soledade Poggi de Aragao

Banca: 

Prof. Dr. Marco Antonio Casanova

Prof(a) Dr(a) Simone Diniz Junqueira Barbosa

Prof. Dr. Helio Côrtes Vieira Lopes

Acompanhe-nos também pelo link: https://puc-rio.zoom.us/j/99231065632?pwd=T1lWTS9vWlVidUd4ZWp2citocTN5Zz09

 

Defesa de Dissertação de Mestrado do aluno Arthur Monteiro

Defesa de Dissertação de Mestrado do aluno Arthur Monteiro
Título da dissertação: Districting and Vehicle Routing: Learning the Delivery Costs
Resumo: O problema de Districting-and-routing é um problema estratégico no qual porções geográficas devem ser agregadas em regiões de entrega, e cada região de entrega possui um custo estimado de roteamento no longo prazo. O objetivo do problema é minimizar os custos de roteamento esperados, além de garantir a divisão regional através da definição dos distritos. A simulação para obter uma boa aproximação dos custos estimados requer um grande esforço computacional, enquanto mecanismos como busca local precisam que esse cálculo seja feito de forma muito eficiente, tornando essa estratégia de cálculo inviável. A maioria das abordagens de solução existentes para esse problema se baseiam em fórmulas de aproximação contínua para medir custos, embora normalmente rápidas, essas fórmulas podem cometer erros significativos. Em contraste, propomos uma Rede Neural Grafo (GNN) treinada em um conjunto de cenários, que é então usada dentro de uma abordagem de otimização para inferir custos de roteamento. Nossos experimentos computacionais em várias cidades do Reino Unido mostram que a GNN produz previsões de custos precisas. Além disso, usar esse melhor estimador durante uma busca local impacta positivamente a qualidade das soluções, levando a uma economia de 10,35% no custo de entrega em relação a função Beardwood, que é comumente usada nesses cenários, e ganhos similares em comparação com outros métodos de aproximação.
Orientador: Prof. Dr. Thibaut Victor Gaston Vidal
Co-orientador: Prof. Dr. Quentin Cappart
Banca:
Prof. Dr. Alberto Maria Santini
Prof. Dr. Marcus Vinicius Soledade Poggi de Aragao
Prof. Dr. Helio Côrtes Vieira Lopes
 
Acompanhe-nos também pelo link: https://polymtl-ca.zoom.us/j/9098098533

Defesa de Tese de Doutorado do aluno  Lucas Caracas de Figueiredo

Defesa de Tese de Doutorado do aluno  Lucas Caracas de Figueiredo

Título da tese: Deep-Learning-Based Shape Matching Framework on 3D CAD Models

Resumo:

Modelos CAD 3D ricos em dados são essenciais durante os diferentes estágios do ciclo de vida de projetos de engenharia. Devido à recente popularização da metodologia BIM e do uso de Gêmeos Digitais para a manufatura inteligente, a quantidade de detalhes, o tamanho, e a complexidade desses modelos aumentaram significativamente. Apesar desses modelos serem compostos de várias geometrias repetidas, os softwares de projeto de plantas geralmente não proveem nenhuma informação de instanciação. Trabalhos anteriores demonstraram que removendo a redundância na representação dos modelos CAD 3D reduz significativamente o armazenamento e requisição de memória deles, ao passo que facilita otimizações de renderização. Este trabalho propõe um arcabouço para correspondência de formas baseado em aprendizado profundo que minimiza as informações redundantes de um modelo CAD 3D a esse respeito. Nos apoiamos nos avanços recentes no processamento profundo de nuvens de pontos, superando desvantagens de trabalhos anteriores, como a forte dependência da ordenação dos vértices e topologia das malhas de triângulos. O arcabouço desenvolvido utiliza nuvens de pontos uniformemente amostradas para identificar similaridades entre malhas em modelos CAD 3D e computam uma matriz de transformação afim ótima para instancia-las. Resultados em modelos CAD 3D reais demonstram o valor do arcabouço proposto. O procedimento de registro de nuvem de pontos desenvolvido atinge um erro de superfície menor, ao mesmo tempo que executa mais rápido que abordagens anteriores. A abordagem supervisionada de classificação desenvolvida atingiu resultados equivalentes em comparação com métodos limitados anteriores e os superou significativamente num cenário de embaralhamento de vértices. Propomos também uma abordagem não supervisionada que agrupa malhas semelhantes e supera a necessidade de rotular explicitamente as geometrias no modelo CAD 3D. Este método não supervisionado obtém resultados competitivos quando comparados às abordagens anteriores, até mesmo superando-os em determinados cenários.

Orientador: Prof. Dr. Waldemar Celes Filho

Banca:

Prof. Dr. Paulo Ivson Netto Santos

Prof. Dr. Manuel Menezes de Oliveira Neto

Prof. Dr. Anselmo Cardoso de Paiva

Prof. Dr. Marley Maria Bernardes Rebuzzi Vellasco

Prof. Dr.  Marcelo Gattass

Prof. Dr. Luiz Henrique de Figueiredo

Prof. Dr. Alberto Barbosa Raposo

Acompanhe-nos também pelo link: https://puc-rio.zoom.us/j/98970035820?pwd=Vno5Ym44c3hETWZKYVVVOWF0TUlpZz09

 

Defesa de Tese de Doutorado do aluno Jonatas do Santos Grosman

Defesa de Tese de Doutorado do aluno Jonatas do Santos Grosman

Título da tese: Assessing the Robustness of Large Pre-trained Models in the Speech Recognition

Resumo: 

Utilizar representações fornecidas por um grande modelo pré-treinado tornou-se a principal estratégia para alcançar o estado da arte nas mais variadas tarefas. Um grande modelo pré-treinado recentemente proposto, wav2vec 2.0, foi seminal para vários outros trabalhos sobre pré-treinamento de grandes modelos em dados de fala. Muitos modelos estão sendo pré-treinados usando a mesma arquitetura baseada em transformer que o wav2vec 2.0 e estão obtendo o estado da arte em várias tarefas relacionadas à fala. No entanto, poucos trabalhos propuseram maiores investigações sobre a robustez desses modelos. Nosso trabalho visa investigar a robustez desses modelos em dois aspectos diferentes. O primeiro é sobre a transferibilidade entre línguas desses modelos. Nossos experimentos nos mostraram que o tamanho dos dados usados durante o pré-treinamento desses modelos não é tão crucial para a transferibilidade quanto a diversidade. Percebemos que o desempenho das línguas indo-europeias é superior ao das línguas não indo-europeias nos modelos avaliados. Vimos uma transferência positiva de conhecimento entre línguas usando modelos monolinguais, o que foi percebido em todos os idiomas que usamos, mas foi mais evidente quando o idioma usado durante o pré-treinamento era mais semelhante ao idioma do fine-tuning. O segundo aspecto de robustez que investigamos em nosso trabalho é quão bem esses modelos se comportam em cenários de desbalanceamento de dados, onde há um subconjunto mais representativo no conjunto de dados do fine-tuning. Nossos resultados mostraram que o desbalanceamento dos dados no fine-tuning geralmente afeta o resultado final dos modelos, com melhor desempenho nos subconjuntos mais representativos. No entanto, uma maior variabilidade no conjunto de treinamento favorece o desempenho do modelo para um subconjunto mais representativo. Porém essa maior variabilidade nos dados não favoreceu os idiomas não vistos durante o treinamento. Observamos também que em alguns cenários os modelos parecem mais robustos em lidar com o desbalanceamento de gênero do que idade ou sotaque. Com esses achados, esperamos ajudar a comunidade científica na utilização de modelos pré-treinados existentes, bem como auxiliar no pré-treinamento de novos modelos.

 

Orientador: Prof. Dr. Hélio Côrtes Vieira Lopes

Banca: 

Prof. Dr. Cassio Freitas Pereira de Almeida

Prof. Dr. Guilherme Gonçalves Schardong

Prof. Dr. Bruno Feijo

Prof. Dr. Marcus Vinicius Soledade Poggi de Aragao

Prof. Dr. Luiz Carlos Pacheco Rodrigues Velho

Acompanhe-nos também no site: http://www.inf.puc-rio.br/blog/noticia/noticia/defesa-de-tese-de-doutorado-assessing-the-robustness-of-large-pre-trained-models-in-the-speech-recognition

 

 

Defesa de Dissertação de Mestrado do aluno Victor Augusto Lima L.

Defesa de Dissertação de Mestrado do aluno Victor Augusto Lima L.

Título da dissertação: TuningChef: uma abordagem para escolher as ações de sintonia fina de banco de dados com melhor custo-benefício

Resumo: Enquanto muitos trabalhos de pesquisa propõem uma forma de listar um conjunto de opções de sintonia fina para uma determinada carga de trabalho, poucos oferecem uma maneira de ajudar o DBA a tomar melhores decisões ao encontrar um conjunto de ações disponíveis, principalmente ao levar em consideração suas próprias. TuningChef é o resultado do desenvolvimento de uma proposta do passo a passo desse processo de decisão. Dado um conjunto de opções de sintonia fina, recomendamos o subconjunto de melhor custo-benefício com contexto suficiente para que o DBA entenda a motivação por trás de cada decisão, com a possibilidade de deixar o usuário construir seu próprio subconjunto e verificar o impacto esperado.

Orientador: Prof. Dr. Sergio Lifschitz

Banca: 

Prof. Dr.  Javam de Castro Machado

Prof(a) Dr(a) Fernanda Araujo Baião

Prof(a) Dr(a) Juliana Alves Pereira

Prof. Dr. Edward Hermann Haeusler

Acompanhe-nos pelo link:  https://puc-rio.zoom.us/j/93725142535?pwd=YXdKdXhxY3BWQmQxU1RHNWkwTXZUdz09

Defesa de Tese de Doutorado do aluno Angelo Batista Neves Junior

Defesa de Tese de Doutorado do aluno Angelo Batista Neves Junior

Título da dissertação: Automatic Generation of Benchmarks for Evaluating Keyword and Natural Language Interfaces to RDF Datasets

Resumo: Os sistemas de busca textual fornecem aos usuários uma alternativa amigável para acessar datasets RDF (Resource Description Framework). A avaliação de desempenho de tais sistemas requer benchmarks adequados, consistindo de datasets RDF, consultas e respectivas respostas esperadas. No entanto, os benchmarks disponíveis geralmente possuem poucas consultas e respostas incompletas, principalmente porque são construídos manualmente com a ajuda de especialistas. A contribuição central desta tese é um método para construir benchmarks automaticamente, com um maior número de consultas e com respostas mais completas. O método proposto aplica-se tanto a consultas baseadas em palavras-chave quanto em linguagem natural e possui duas partes: geração de consultas e geração de respostas. A geração de consultas seleciona um conjunto de entidades relevantes, chamadas de indutores, e, para cada uma, heurísticas orientam o processo de extração de consultas relacionadas. A geração de respostas recebe as consultas produzidas no passo anterior e computa geradores de solução (SG), subgrafos do dataset original contendo diferentes respostas às consultas. Heurísticas também orientam a construção dos SGs evitando o desperdício de recursos computacionais na geração de respostas irrelevantes.

Orientador: Prof. Dr. Marco Antonio Casanova

Banca: 

Prof. Dr. Luiz André Portes Paes Leme

Prof. Dr. Geraldo Bonorino Xexéo

Prof(a) Dr(a) Vânia Maria Ponte Vidal

Prof. Dr. Antonio Luz Furtado

Prof(a) Dr(a) Melissa Lemos Cavaliére

Prof. Dr. José Antonio Fernandes de Macêdo

Prof(a) Dr(a) Simone Diniz Junqueira Barbosa

Acompanhe-nos também pelo link: https://puc-rio.zoom.us/j/93760975741?pwd=YXVNcUQzTTlNa2ZlOVhyd1BhLzkwdz09

 

 

Defesa de Dissertação de Mestrado da aluna Nelia C. Reis

Defesa de Dissertação de Mestrado da aluna Nelia C. Reis

Título da dissertação: Classificação de fácies sísmicas utilizando multiatributos sísmicos

Resumo: A interpretação sísmica é um processo fundamental para a exploração de hidrocarbonetos. Essa atividade consiste na identificação de informação geológica através do processamento e análise de dados sísmicos. Com o crescimento acentuado e a complexidade dos dados sísmicos, a análise manual de fácies sísmicas tornou-se um desafio significativo. O mapeamento de fácies sísmicas é um processo demorado e que requer profissionais especializados. O objetivo deste trabalho visa aplicar a classificação multiatributos usando uma rede neural encoder-decoder para mapear as fácies sísmicas e auxiliar no processo de interpretação. Um conjunto de atributos sísmicos, foram calculados utilizando o software Opendtect versão 6.6 a partir dos dados de amplitude contidos no Dataset Facies-Mark. Sendo eles: Energia, Pseudo Relevo, Fase instantânea e Textura, todos foram selecionados por um intérprete. A função de perda utilizada pela rede foi weighted categorical crossentropy, pelo fato das classes serem consideravelmente desbalanceadas. O treinamento foi realizado nas direções inlines e crosslines para as respectivas combinações: atributos, atributo + amplitude, e somente a amplitude. Os resultados baseado na métrica frequency weighted intersection over union (FWIU), mostraram que os atributos junto com a amplitude obtiveram o melhor resultado, 85,73%, em comparação com as outras combinações citadas. Em comparação direta com o trabalho que inspirou essa dissertação, o multiatributos performou melhor.

Orientador: Prof. Dr. Marcelo Gattass

Banca:

Prof. Dr. Aristófanes Corrêa Silva

Prof. Dr. Alberto Barbosa Raposo

Prof. Dr. Jan Jose Hurtado Jauregui

Prof. Dr. Helio Côrtes Vieira Lopes

Acompanhe-nos pelo link: https://puc-rio.zoom.us/j/91303208713?pwd=cFB5SU5kaXdEUEFaZ0tOdG1DRHRmUT09

 

 

Defesa de Dissertação de Mestrado do aluno Anderson S. Fonseca

Defesa de Dissertação de Mestrado do aluno Anderson S. Fonseca
Título da dissertação: Sistema de anotação baseado em visualização 3D com imagens 360º de instalações industriais
Resumo: Atualmente, empresas focadas em aperfeiçoar seus locais de trabalho usam modelos 3D como gêmeos digitais como parte das suas atividades. Estes modelos podem ser usados para criação de planejamento, extração de dados reais, simulação e treinamento. Porém, um gêmeo digital defeituoso, ou seja, que apresenta informações incorretas, podem gerar reproduções ou diagnósticos diferentes, arruinando quaisquer comparativos com a realidade. Para evitar este cenário, são usadas fotografias, fotografias 360°,vídeos, modelos 3D ou anotações como materiais de suporte para enriquecer um gêmeo digital, mas demanda um grande tempo para transferir e interligar informações entre cada tipo de recurso. Este trabalho apresenta uma ferramenta que explora os benefícios de combinar imagens 360º de instalações industriais com modelos tridimensionais com a finalidade de gerar um gêmeo digital as-built. A ferramentas ser apresentada possui uma interface capaz de exibir um modelo tridimensional de uma plataforma em conjunto com diversas fotografias 360°. Cada imagem pode ser ajustada a uma localização dentro do sistema de coordenadas do modelo, inclusive permitindo alterações nos eixos e no campo de visão. Durante a navegação, é possível navegar livremente pelo modelo e pelas posições de interesse criadas pelo usuário. Além da visualização, a ferramenta propõe uma interação mais eficaz para realizar anotações entre modelos e fotografias 360° com a propósito de verificar consistências ou agregar novas informações ao gêmeo digital. Estas interações são importantes para a inspeção e manutenção, como avaliação de peças, análise das condições atuais ou a criação de comparativos entre o planejado e o real.
 
Orientador: Prof. Dr. Marcelo Gattass
Banca:
Prof. Dr Paulo Ivson Netto Santos
Prof. Dr Anselmo Cardoso de Paiva
Prof. Dr Waldemar Celes Filho
Prof. Dr Felipe Gomes de Carvalho
Prof. Dr Alberto Barbosa Raposo
Acompanhe-nos pelo link: https://puc-rio.zoom.us/j/99425486382?pwd=K05uKzJBeW9sdU9pT0NFWmtXMklLUT09

Defesa de Dissertação de Mestrado do aluno Arthur Costa Serra

Defesa de Dissertação de Mestrado do aluno Arthur Costa Serra

Título da dissertação: Reconstrução de músicas altamente degradadas usando modelos de aprendizado profundo

Resumo: A degradação da qualidade do áudio pode ter muitas causas. Para aplicações musicais, esta fragmentação pode levar a experiências altamente desagradáveis. Algoritmos de restauração podem ser empregados para reconstruir partes do áudio de forma semelhante à reconstrução da imagem, em uma abordagem chamada \textit{Audio Inpainting}. Os métodos atuais de última geração para \textit{Audio Inpainting} cobrem cenários limitados, com janelas de intervalo bem definidas e pouca variedade de gêneros musicais. Neste trabalho, propomos um método baseado em aprendizado profundo para \textit{Audio Inpainting} acompanhado por um conjunto de dados com condições de fragmentação aleatórias que se aproximam de situações reais de deficiência. O conjunto de dados foi coletado utilizando faixas de diferentes gêneros musicais, o que proporciona uma boa variabilidade de sinal. Nosso melhor modelo melhorou a qualidade de todos os gêneros musicais, obtendo uma média de 13,1 dB de PSNR, embora tenha funcionado melhor para gêneros musicais nos quais os instrumentos acústicos são predominantes.

Orientador:  Prof. Dr. Sérgio Colcher

Banca:

Prof. Dr. Julio Cesar Duarte

Prof. Dr. Edward Hermann Haeusler

Prof. Dr. Sergio Lifschitz

Acompanhe-nos pelo link: https://puc-rio.zoom.us/j/97813956133?pwd=Z2hLY0JNVTFiRXo3dkJVSkRMa0JVQT09